姓名:邓柯玉
职称:教授
邮箱:dky@ncu.edu.cn
籍贯:江西新建
导师类型:博士生导师
主讲课程:转基因动物在生物医学中的应用
个人主页:
转化医学;羊膜干细胞制备及其应用;心脏重构的发生发展机制
1980.9~1985.7:江西医学院,临床医学专业,医学学士
1987.9~1990.7:江西医学院,药理学,医学硕士
1994.2~1999.12:范德比尔大学,细胞生物系,访问交流
985.8~1990.8:江西省医学科学研究所,药理研究室,实习研究员
1990.8~1993.12:江西省医学科学研究所,药理研究室,助理研究员
2000.1~2000.6:宾西法尼亚大学,Center for Animal Transgenesis and Germ Cell Research,Research Specialist C
2000.7~2011.6:康奈尔大学,Cornell’s Stem Cell and Transgenic Core Facility, Director of Transgenic Service
2011.7~至今:南昌大学转化医学研究院, PI, 转基因动物中心 主任
江西省实验动物协会 常务理事
2012年入选省级人才
一、 主要科研成果
作为核心参与人先后参与完成国家自然科学基金委973专项1项,国家新药创制项目1项,自然科学基金面上项目2项,自然科学基金地区项目1项;作为骨干人员参与国家科技部重点研发计划1项;主持国家自然科学基金课题2项,主持江西省科技优势团队计划项目1项;在国内外权威刊物发表SCI收录学术论文60余篇。获江西省科技进步三等奖1项(2/4)。
1、 主持科研课题
[1] 邓柯玉. 分选蛋白SNX16在心血管疾病中的作用及其机制研究,江西省优势创新团队建设计划,江西省科学技术厅, 30.00万元, 2014.1-2016.12, 20142BCB001.
[2] 邓柯玉. 胰岛beta细胞特异性敲除Cdc42对机体血糖稳态的影响及其机制研究,国家自然科学基金,34 万元,2018.01-2021.12,81760140.
[3] 邓柯玉. 小分子GTP酶在心脏重构-纤维化中的作用及其分子机制,国家自然科学基金, 55万元, 2020.1- 2023.12, 8190256.
[4] 邓柯玉(课题骨干). 特定环境下干细胞的命运演变及其对组织器官发育和功能重塑的调控, 国家科技部重点研发计划-干细胞与器官修复重点专项(课题4),97.875万元, 2022.12- 2027.11, 2022YFA104304.
[5] 邓柯玉. 江西省赣鄱英才555计划-创新创业人才项目. 100万元, 2013.1-2015.12.
2、 发表代表性论文
1)Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hucmscs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their vegf-mediated inhibition of dendritic cells maturation. International immunopharmacology. 2023;124:110875
2)Wang X-Y, Mao H-W, Guan X-H, Huang Q-M, Yu Z-P, Wu J, Tan H-L, Zhang F, Huang X, Deng K-Y, Xin H-B. Trim65 promotes cervical cancer through selectively degrading p53-mediated inhibition of autophagy and apoptosis. Frontiers in oncology. 2022;12
3)Liu Q-W, Ying Y-M, Zhou J-X, Zhang W-J, Liu Z-x, Jia B-B, Gu H-C, Zhao C-Y, Guan X-H, Deng K-Y, Xin H-B. Human amniotic mesenchymal stem cells-derived igfbp-3, dkk-3, and dkk-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking wnt/β-catenin signaling pathway in mice. Stem Cell Research & Therapy. 2022;13:224
4)Xie L, Wen K, Li Q, Huang C-C, Zhao J-L, Zhao Q-H, Xiao Y-F, Guan X-H, Qian Y-S, Gan L, Wang L-F, Deng K-Y, Xin H-B. Cd38 deficiency protects mice from high fat diet-induced nonalcoholic fatty liver disease through activating nad(+)/sirtuins signaling pathways-mediated inhibition of lipid accumulation and oxidative stress in hepatocytes. International journal of biological sciences. 2021;17:4305-4315
5)Wang X-Y, Guan X-H, Yu Z-P, Wu J, Huang Q-M, Deng K-Y, Xin H-B. Human amniotic stem cells-derived exosmal mir-181a-5p and mir-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively. Stem cell research & therapy. 2021;12:501-501
6)Tan H-L, Guan X-H, Hu M, Wu J, Li R-Z, Wang L-F, Huang H-D, Yu Z-P, Wang X-Y, Xiao Y-F, Deng K-Y, Xin H-B. Human amniotic mesenchymal stem cells-conditioned medium protects mice from high-fat diet-induced obesity. Stem cell research & therapy. 2021;12:364-364
7)Liu Q-W, Chen Y, Li J-Y, Xiao L, Zhang W-J, Zhao J-L, Gu H-C, Wu H-Y, Zuo G-S-L, Deng K-Y, Xin H-B. Bone marrow cells are differentiated into mdscs by bcc-ex through down-regulating the expression of cxcr4 and activating stat3 signalling pathway. Journal of cellular and molecular medicine. 2021;25:5497-5510
8)Liu Q-W, Li J-Y, Zhang X-C, Liu Y, Liu Q-Y, Xiao L, Zhang W-J, Wu H-Y, Deng K-Y, Xin H-B. Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. Journal of cellular and molecular medicine. 2020;24:10525-10541
9)He X-Q, Wang N, Zhao J-J, Wang D, Wang C-J, Xie L, Zheng H-Y, Shi S-Z, He J, Zhou J, Xin H-B*, Deng K-Y*. Specific deletion of cdc42 in pancreatic β cells attenuates glucose-induced insulin expression and secretion in mice. Molecular and Cellular Endocrinology. 2020;518:111004
10)Wang LF, Cao Q, Wen K, Xiao YF, Chen TT, Guan XH, Liu Y, Zuo L, Qian YS, Deng KY*, Xin HB*. Cd38 deficiency alleviates d-galactose-induced myocardial cell senescence through nad(+)/sirt1 signaling pathway. Frontiers in physiology. 2019;10:1125
11)Shi SZ, Lee EJ, Lin YJ, Chen L, Zheng HY, He XQ, Peng JY, Noonepalle SK, Shull AY, Pei FC, Deng LB, Tian XL, Deng KY*, Shi H*, Xin HB*. Recruitment of monocytes and epigenetic silencing of intratumoral cyp7b1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. American journal of cancer research. 2019;9:2194-2208
12)Xiao YF, Zeng ZX, Guan XH, Wang LF, Wang CJ, Shi H, Shou W, Deng KY*, Xin HB*. Fkbp12.6 protects heart from angii-induced hypertrophy through inhibiting ca(2+) /calmodulin-mediated signalling pathways in vivo and in vitro. J Cell Mol Med. 2018;. 2018;22:3638-3651
13)Wang LF, Miao LJ, Wang XN, Huang CC, Qian YS, Huang X, Wang XL, Jin WZ, Ji GJ, Fu M, Deng KY*, Xin HB*. Cd38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating sirt1/ppargamma signaling pathway. J Cell Mol Med. 2018;22:101-110
14)Wang LF, Huang CC, Xiao YF, Guan XH, Wang XN, Cao Q, Liu Y, Huang X, Deng LB, Deng KY*, Xin HB*. Cd38 deficiency protects heart from high fat diet-induced oxidative stress via activating sirt3/foxo3 pathway. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018;48:2350-2363
15)Qian Y, Chen C, Ma L, Wang Z, Wang L-F, Zuo L, Yang Y, Huang X, Jiang M, Wang X, Shi H, Fu M, Deng K-Y*, Xin H-B*. Cd38 deficiency promotes inflammatory response through activating sirt1/nf-κb-mediated inhibition of tlr2 expression in macrophages. Mediators of inflammation. 2018;2018:8736949-8736949
3、成果获奖:
[1] CD38缺失对心脏的保护作用及其机制研究,江西省自然科学奖三等奖, 2021年6月, 邓柯玉(2/4)